4.7 Article

Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs

Journal

PROTEIN & CELL
Volume 9, Issue 3, Pages 283-297

Publisher

HIGHER EDUCATION PRESS
DOI: 10.1007/s13238-017-0499-y

Keywords

mitochondria; iPSCs; TALEN; MELAS

Categories

Funding

  1. Reproductive health and major birth defects prevention and control research Key Special Fund [2016YFC1000601, 2016YFC1000201, 2016YFC1000302]
  2. National Natural Science Foundation of China [31371521, 81370766, 81401254, 81570101, 81671121, 31601187, 81521002]
  3. Guangdong Province Science and Technology Project [2014TQ01R683, 2017A020214005, 2016A020216023, 2015A030310119, 2016B030229008]
  4. Bureau of Science and Technology of Guangzhou Municipality [201505011111498]
  5. Ministry of Science and Technology of China Grants (973 program) [2014CB943203]
  6. Beijing Nova Program [xxjh2015011]

Ask authors/readers for more resources

Mitochondrial diseases are maternally inherited heterogeneous disorders that are primarily caused by mitochondrial DNA (mtDNA) mutations. Depending on the ratio of mutant to wild-type mtDNA, known as hetero-plasmy, mitochondrial defects can result in a wide spectrum of clinical manifestations. Mitochondria-targeted endonucleases provide an alternative avenue for treating mitochondrial disorders via targeted destruction of the mutant mtDNA and induction of heteroplasmic shifting. Here, we generated mitochondrial disease patient-specific induced pluripotent stem cells (MiPSCs) that harbored a high proportion of m.3243A>G mtDNA mutations and caused mitochondrial encephalomyopathy and stroke-like episodes (MELAS). We engineered mitochondrial-targeted transcription activator-like effector nucleases (mitoTALENs) and successfully eliminated the m.3243A>G mutation in MiPSCs. Off-target mutagenesis was not detected in the targeted MiPSC clones. Utilizing a dual fluorescence iPSC reporter cell line expressing a 3243G mutant mtDNA sequence in the nuclear genome, mitoTALENs displayed a significantly limited ability to target the nuclear genome compared with nuclear-localized TALENs. Moreover, genetically rescued MiPSCs displayed normal mitochondrial respiration and energy production. Moreover, neuronal progenitor cells differentiated from the rescued MiPSCs also demonstrated normal metabolic profiles. Furthermore, we successfully achieved reduction in the human m.3243A>G mtDNA mutation in porcine oocytes via injection of mitoTALEN mRNA. Our study shows the great potential for using mitoTALENs for specific targeting of mutant mtDNA both in iPSCs and mammalian oocytes, which not only provides a new avenue for studying mitochondrial biology and disease but also suggests a potential therapeutic approach for the treatment of mitochondrial disease, as well as the prevention of germline transmission of mutant mtDNA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available