4.7 Article

Disease Inference from Health-Related Questions via Sparse Deep Learning

Journal

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
Volume 27, Issue 8, Pages 2107-2119

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/TKDE.2015.2399298

Keywords

Community-based health services; question answering; disease inference; deep learning

Ask authors/readers for more resources

Automatic disease inference is of importance to bridge the gap between what online health seekers with unusual symptoms need and what busy human doctors with biased expertise can offer. However, accurately and efficiently inferring diseases is non-trivial, especially for community-based health services due to the vocabulary gap, incomplete information, correlated medical concepts, and limited high quality training samples. In this paper, we first report a user study on the information needs of health seekers in terms of questions and then select those that ask for possible diseases of their manifested symptoms for further analytic. We next propose a novel deep learning scheme to infer the possible diseases given the questions of health seekers. The proposed scheme is comprised of two key components. The first globally mines the discriminant medical signatures from raw features. The second deems the raw features and their signatures as input nodes in one layer and hidden nodes in the subsequent layer, respectively. Meanwhile, it learns the inter-relations between these two layers via pre-training with pseudo-labeled data. Following that, the hidden nodes serve as raw features for the more abstract signature mining. With incremental and alternative repeating of these two components, our scheme builds a sparsely connected deep architecture with three hidden layers. Overall, it well fits specific tasks with fine-tuning. Extensive experiments on a real-world dataset labeled by online doctors show the significant performance gains of our scheme.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available