4.7 Article

Wound Dressings Based on Chitosan-Dialdehyde Cellulose Nanocrystals-Silver Nanoparticles: Mechanical Strength, Antibacterial Activity and Cytotoxicity

Journal

POLYMERS
Volume 10, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/polym10060673

Keywords

chitosan; dialdehyde cellulose nanocrystals; silver nanoparticles; mechanical strength; antibacterial activity; cytotoxicity; wound dressings

Funding

  1. Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education [SWZCL2016-16]
  2. Basic Research Fund of Heilongjiang Provincial Department of Education [135109305]

Ask authors/readers for more resources

The present work envisages a simple approach to synthesize a new wound dressing based on chitosan-dialdehyde cellulose nanocrystal-silver nanoparticles (CS-DCNC-AgNPs). Silver nanoparticles (AgNPs) were generated in-situ by periodate oxidation of cellulose nanocrystals to generate aldehyde functions, which were used to reduce Ag+ into Ag-0 in mild alkaline conditions. Subsequently, the dialdehyde cellulose nanocrystal-silver nanoparticles (DCNC-AgNPs) were added to chitosan (CS) to form the wound dressings by solution casting method. The aim was to enhance the antibacterial effect of CS by incorporation of AgNPs and to improve the mechanical strength and hydrophobicity of CS by incorporation of DCNC that cross-linked by hydrogen bonds. The antibacterial activities were evaluated against five gram-negative bacteria, one gram-positive bacteria, and three fungi. The in vitro cytotoxicity assay was performed using the NIH3T3 cell lines by Sulforhodamine B assay. Research outputs signified that CS-DCNC-AgNPs possessed good mechanical strength and hydrophobicity, high antibacterial activity and less cytotoxicity. Our results propose that CS-DCNC-AgNPs can be a promising, safe antibacterial to be incorporated in wound dressings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available