4.7 Article

Assessing the Contribution of the CFRP Strip of Bearing the Applied Load Using Near-Surface Mounted Strengthening Technique with Innovative High-Strength Self-Compacting Cementitious Adhesive (IHSSC-CA)

Journal

POLYMERS
Volume 10, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/polym10010066

Keywords

CFRP strips; near-surface mounted; cementitious adhesive; pull-out test; concrete

Funding

  1. Ministry of Higher Education and Scientific Research in Iraq
  2. Higher Committee for Education Development in Iraq

Ask authors/readers for more resources

Efficient transfer of load between concrete substrate and fibre reinforced polymer (FRP) by the bonding agent is the key factor in any FRP strengthening system. An innovative high-strength self-compacting non-polymer cementitious adhesive (IHSSC-CA) was recently developed by the authors and has been used in a number of studies. Graphene oxide and cementitious materials are used to synthesise the new adhesive. The successful implementation of IHSSC-CA significantly increases carbon FRP (CFRP) strip utilization and the load-bearing capacity of the near-surface mounted (NSM) CFRP strengthening system. A number of tests were used to inspect the interfacial zone in the bonding area of NSM CFRP strips, including physical examination, pore structure analysis, and three-dimensional laser profilometery analysis. It was deduced from the physical inspection of NSM CFRP specimens made with IHSSC-CA that a smooth surface for load transfer was found in the CFRP strip without stress concentrations in some local regions. A smooth surface of the adhesive layer is very important for preventing localized brittle failure in the concrete. The pore structure analysis also confirmed that IHSSC-CA has better composite action between NSM CFRP strips and concrete substrate than other adhesives, resulting in the NSM CFRP specimens made with IHSSC-CA sustaining a greater load. Finally, the results of three-dimensional laser profilometery revealed a greater degree of roughness and less deformation on the surface of the CFRP strip when IHSSC-CA was used compared to other adhesives.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available