4.7 Article

Phase Transition Effects on Mechanical Properties of NIPA Hydrogel

Journal

POLYMERS
Volume 10, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/polym10040358

Keywords

temperature-sensitive hydrogel; phase transition; mechanical properties; cyclic load; toughening

Funding

  1. National Natural Science Foundation of China [11572236]

Ask authors/readers for more resources

Due to its excellent temperature sensitivity, the Poly(N-isopropylacrylamide) (NIPA) hydrogel has attracted great interest for a wide variety of applications in tissue engineering and regenerative medicine. NIPA hydrogel undergoes an abrupt volume phase transition at a lower critical solution temperature (LCST) of 30-35 degrees C. However, the mechanical behaviors of NIPA hydrogel induced by phase transition are still not well understood. In this study, phase transition effects on mechanical properties of NIPA hydrogel are quantitatively studied from experimental studies. The mechanical properties of NIPA hydrogel with the LSCT around 35 degrees C are systemically studied with varying temperatures (31-39 degrees C) under a tensile test. We find that the mechanical properties of NIPA hydrogel are greatly influenced by phase transition during the tension process. The maximum nominal stress and maximum stretch above the LCST are larger than those of below the LCST. The Young's modulus of NIPA hydrogel is around 13 kPa at 31 degrees C and approximately 28 kPa at 39 degrees C. A dramatic increase of Young's modulus values is observed as the temperature increases through the phase transition. The samples at a temperature around the LCST are easy to rupture, because of phase coexistent. Additionally, NIPA hydrogel displays toughening behavior under a cyclic load. Furthermore, the toughening characteristic is different between the swollen state and the collapsed state. This might originate from the internal fracture process and redistribution of polymer chains during the tension process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available