4.7 Article

Bi Nanoparticles Anchored in N-Doped Porous Carbon as Anode of High Energy Density Lithium Ion Battery

Journal

NANO-MICRO LETTERS
Volume 10, Issue 4, Pages -

Publisher

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-018-0209-1

Keywords

Porous N-doped carbon; Bi nanoparticles; Anode; Lithium-ion battery; High energy density

Funding

  1. Natural Science Foundation of Guangdong Province [2017B030306013]
  2. key project of Science and Technology in Guangdong Province [2017A010106006]

Ask authors/readers for more resources

A novel bismuth-carbon composite, in which bismuth nanoparticles were anchored in a nitrogen-doped carbon matrix (Bi@NC), is proposed as anode for high volumetric energy density lithium ion batteries (LIBs). Bi@NC composite was synthesized via carbonization of Zn-containing zeolitic imidazolate (ZIF-8) and replacement of Zn with Bi, resulting in the N-doped carbon that was hierarchically porous and anchored with Bi nanoparticles. The matrix provides a highly electronic conductive network that facilitates the lithiation/delithiation of Bi. Additionally, it restrains aggregation of Bi nanoparticles and serves as a buffer layer to alleviate the mechanical strain of Bi nanoparticles upon Li insertion/extraction. With these contributions, Bi@NC exhibits excellent cycling stability and rate capacity compared to bare Bi nanoparticles or their simple composites with carbon. This study provides a new approach for fabricating high volumetric energy density LIBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available