4.7 Article

Learning Temporal Information for Brain-Computer Interface Using Convolutional Neural Networks

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNNLS.2018.2789927

Keywords

Brain-computer interface (BCI); convolutional neural network (CNN); deep learning (DL); machine learning; motor imagery (MI); signal processing

Ask authors/readers for more resources

Deep learning (DL) methods and architectures have been the state-of-the-art classification algorithms for computer vision and natural language processing problems. However, the successful application of these methods in motor imagery (MI) brain-computer interfaces (BCIs), in order to boost classification performance, is still limited. In this paper, we propose a classification framework for MI data by introducing a new temporal representation of the data and also utilizing a convolutional neural network (CNN) architecture for classification. The new representation is generated from modifying the filter-bank common spatial patterns method, and the CNN is designed and optimized accordingly for the representation. Our framework outperforms the best classification method in the literature on the BCI competition IV-2a 4-class MI data set by 7% increase in average subject accuracy. Furthermore, by studying the convolutional weights of the trained networks, we gain an insight into the temporal characteristics of EEG.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available