4.6 Article

Energy reduction of a submerged membrane bioreactor using a polytetrafluoroethylene (PTFE) hollow-fiber membrane

Journal

Publisher

HIGHER EDUCATION PRESS
DOI: 10.1007/s11783-018-1018-y

Keywords

Energy-saving; Membrane bioreactor; Polytetrafluoroethylene (PTFE) membrane; Hollow fiber; Power consumption

Ask authors/readers for more resources

In this study, we modified a polytetrafluoroethylene (PTFE) hollow-fiber membrane element used for submerged membrane bioreactors (MBRs) to reduce the energy consumption during MBR processes. The high mechanical strength of the PTFE membrane made it possible to increase the effective length of the membrane fiber from 2 to 3 m. In addition, the packing density was increased by 20% by optimizing the membrane element configuration. These modifications improve the efficiency of membrane cleaning associated with aeration. The target of specific energy consumption was less than 0.4 kWh.m(-3) in this study. The continuous operation of a pilot MBR treating real municipal wastewater revealed that the MBR utilizing the modified membrane element can be stably operated under a specific air demand per membrane surface area (SADm) of 0.13 m(3).m(-2).hr(-1) when the daily-averaged membrane fluxes for the constant flow rate and flow rate fluctuating modes of operation were set to 0.6 and 0.5 m(3).m(-2).d(-1), respectively. The specific energy consumption under these operating conditions was estimated to be less than 0.37 kWh.m(-3). These results strongly suggest that operating an MBR equipped with the modified membrane element with a specific energy consumption of less than 0.4 kWh.m(-3) is highly possible. (C) Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available