4.4 Article

Extensively Drug-Resistant Escherichia coli Sequence Type 1642 Carrying an IncX3 Plasmid Containing the blaKPC-2 Gene Associated with Transposon Tn4401a

Journal

ANNALS OF LABORATORY MEDICINE
Volume 38, Issue 1, Pages 17-22

Publisher

KOREAN SOC LABORATORY MEDICINE
DOI: 10.3343/alm.2018.38.1.17

Keywords

Escherichia coli; ST1642; bla(KPC); Tn4401a; IncX3

Funding

  1. Korea Centers for Disease Control and Prevention [2016-ER230100]

Ask authors/readers for more resources

Background: Extensively drug-resistant (XDR) Enterobacteriaceae carrying the bla(KPC) gene have emerged as a major global therapeutic concern. The purpose of this study was to analyze the complete sequences of plasmids from KPC-2 carbapenemase-producing XDR Escherichia coli sequence type (ST) 1642 isolates. Methods: We performed antimicrobial susceptibility testing, PCR, multilocus sequence typing (MLST), and whole-genome sequencing to characterize the plasmid-mediated KPC-2-producing E. coli clinical isolates. Results: The isolates were resistant to most available antibiotics, including meropenem, ampicillin, ceftriaxone, gentamicin, and ciprofloxacin, but susceptible to tigecycline and colistin. The isolates were identified as the rare ST1642 by MLST. The isolates carried four plasmids: the first 69-kb conjugative IncX3 plasmid harbors blaKPC-2 within a truncated Tn4401a transposon and bla(SHV-11) with duplicated conjugative elements. The second 142-kb plasmid with a multireplicon consisting of IncQ, IncFIA, and IncIB carries bla(TEM-1b) and two class 1 integrons. This plasmid also harbors a wide variety of additional antimicrobial resistance genes including aadA5, dfrA17, mph(A), sul1, tet(B), aac(3')-IId, strA, strB, and sul2. Conclusions: The complete sequence analysis of plasmids from an XDR E. coli strain related to persistent infection showed the coexistence of a bla(KPC-2)-carrying IncX3-type plasmid and a class 1 integron-harboring multireplicon, suggesting its potential to cause outbreaks. Of additional clinical significance, the rare ST1642, identified in a cat, could constitute the source of human infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available