4.4 Article Proceedings Paper

Methods to induce perpendicular magnetic anisotropy in full-Heusler Co2FeSi thin layers in a magnetic tunnel junction structure

Journal

AIP ADVANCES
Volume 8, Issue 5, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5007436

Keywords

-

Funding

  1. semiconductor technology academic research center

Ask authors/readers for more resources

In this study, to obtain perpendicular magnetic tunnel junctions (p-MTJs) using half-metallic ferromagnets (HMFs), several methods were developed to induce perpendicular magnetic anisotropy (PMA) in full-Heusler Co2FeSi (CFS) alloy thin layers in an MTJ multilayer composed of a layered CFS/MgO/CFS structure. Oxygen exposure at 2.0 Pa for 10 min after deposition of the bottom CFS layer was effective for obtaining PMA in the CFS layer. One of the reasons for the PMA is the formation of nearly ideal CFS/MgO interfaces due to oxygen exposure before the deposition of the MgO layer. The annealing process was effective for obtaining PMA in the top CFS layer capped with a Pd layer. PMA was clearly observed in the top CFS layer of a Cr(40 nm)/Pd(50 nm)/bottom CFS(0.6 nm)/MgO(2.0 nm)/top CFS(0.6 nm)/Pd(10 nm) multilayer, where the top CFS and Pd thin films were deposited at RT and subsequently annealed at 300 degrees C. In addition to the continuous layer growth of the films, the crystalline orientation alignment at the top CFS/Pd interface probably attributes to the origin of PMA at the top CFS layer. (C) 2018 Author(s).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available