4.7 Article

Covalent Tethering of Temperature Responsive pNIPAm onto TEMPO-Oxidized Cellulose Nanofibrils via Three-Component Passerini Reaction

Journal

ACS MACRO LETTERS
Volume 7, Issue 4, Pages 412-418

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsmacrolett.8b00051

Keywords

-

Funding

  1. Australian Research Council (ARC)
  2. University of New South Wales

Ask authors/readers for more resources

A critical challenge in the application of functional cellulose fibrils is to perform efficient surface modification without disrupting the original properties. Three-component Passerini reaction (Passerini 3-CR) is regarded as an effective functionalization approach which can be carried out under mild and fast reaction condition. In this study, we investigated the application of Passerini 3-CR for the synthesis of thermoresponsive cellulose fibrils by covalently tethering poly(N-isopropylacrylamide) in aqueous condition at ambient temperature. The three components, a TEMPO-oxidized cellulose nanofiber bearing carboxylic acid moieties (TOCN-COOH), a functionalized polymer with aldehyde group (pNIPAm-COH) and a cyclohexyl isocyanide, were reacted in one pot resulting in 36% of grafting efficiency within 30 min. The chemical coupling was evidenced by improved aqueous dispersibility, which was further confirmed by FT-IR, TGA, UV-vis, and turbidity study. It was observed that the grafting efficiency is strongly dependent on the chain length of the polymer. Furthermore, AFM and X-ray diffraction measurements affirmed the suitability of the proposed method for chemical modification of cellulose nanofibers without significantly compromising the original morphology and structural integrity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available