4.8 Article

Radio Alignment for Inductive Charging of Electric Vehicles

Journal

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
Volume 11, Issue 2, Pages 427-440

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TII.2015.2400925

Keywords

Coil alignment; electric vehicle (EV); inductive charging; wireless ranging

Ask authors/readers for more resources

To maximize power transfer for inductively charging electric vehicles (EVs), charger and battery coils must be aligned. Wireless sensors can be installed to estimate misalignments; however, existing ranging techniques cannot satisfy the precision requirements of the misalignment estimation. We propose a high-precision wireless ranging and misalignment estimation scheme, where high precision is achieved by iteratively measuring, estimating, and aligning the coils. Another key aspect is to convert the nonconvex misalignment estimation to a more tractable problem with a convex objective. We develop a conditional gradient descent method to solve the problem, which performs gradient descent (or conditional gradient descent on the boundary of the search space) and projects out-of-boundary points back into the space. Employing experimentally validated models, we show that our scheme can achieve 92% of the efficiency of perfectly aligned coils in 90% of operations, and tolerate correlated distance measurement errors. In contrast, the prior art is susceptible to correlation, undergoing a significant efficiency degradation of 18.5%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available