4.7 Article

Extremely high strength and work hardening ability in a metastable high entropy alloy

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-018-28383-0

Keywords

-

Ask authors/readers for more resources

Design of multi-phase high entropy alloys uses metastability of phases to tune the strain accommodation by favoring transformation and/or twinning during deformation. Inspired by this, here we present Si containing dual phase Fe42Mn28Co10Cr15Si5 high entropy alloy (DP-5Si-HEA) exhibiting very high strength (1.15 GPa) and work hardening (WH) ability. The addition of Si in DP-5Si-HEA decreased the stability of f.c.c. (gamma) matrix thereby promoting pronounced transformation induced plastic deformation in both as-cast and grain refined DP-5Si-HEAs. Higher yet sustained WH ability in fine grained DP-5Si-HEA is associated with the uniform strain partitioning among the metastable gamma phase and resultant h.c.p. (epsilon) phase thereby resulting in total elongation of 12%. Hence, design of dual phase HEAs for improved strength and work hardenability can be attained by tuning the metastability of gamma-matrix through proper choice of alloy chemistry from the abundant compositional space of HEAs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available