4.7 Article

Characterization of isoprene-derived secondary organic aerosols at a rural site in North China Plain with implications for anthropogenic pollution effects

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-18983-7

Keywords

-

Funding

  1. National Key R&D Plan (Quantitative Relationship and Regulation Principle between Regional Oxidation Capacity of Atmospheric and Air Quality) [2017YFC0210000]
  2. China National Natural Science Founds for Distinguished Young Scholars [41325014]
  3. West Light Foundation of Chinese Academy of Sciences
  4. National Nature Science Foundation of China [41773117, 41405122, 91543116]
  5. NASA/HQ

Ask authors/readers for more resources

Isoprene is the most abundant non-methane volatile organic compound (VOC) and the largest contributor to secondary organic aerosol (SOA) burden on a global scale. In order to examine the influence of high concentrations of anthropogenic pollutants on isoprene-derived SOA (SOA(i)) formation, summertime PM2.5 filter samples were collected with a three-hour sampling interval at a rural site in the North China Plain (NCP), and determined for SOA(i) tracers and other chemical species. RO2+NO pathway derived 2-methylglyceric acid presented a relatively higher contribution to the SOA, due to the high-NOx (similar to 20 ppb) conditions in the NCP that suppressed the reactive uptake of RO2+HO2 reaction derived isoprene epoxydiols. Compared to particle acidity and water content, sulfate plays a dominant role in the heterogeneous formation process of SOA(i). Diurnal variation and correlation of 2-methyltetrols with ozone suggested an important effect of isoprene ozonolysis on SOA(i) formation. SOA(i) increased linearly with levoglucosan during June 10-18, which can be attributed to an increasing emission of isoprene caused by the field burning of wheat straw and a favorable aqueous SOA formation during the aging process of the biomass burning plume. Our results suggested that isoprene oxidation is highly influenced by intensive anthropogenic activities in the NCP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available