4.7 Article

Flexible Organic Thin Film Transistors Incorporating a Biodegradable CO2-Based Polymer as the Substrate and Dielectric Material

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-26585-0

Keywords

-

Funding

  1. Ministry of Science and Technology (MOST) of Taiwan [104-2221-E-001-014-MY3, 104-2221-E-009-096-MY3]
  2. Career Development Award of Academia Sinica, Taiwan [103-CDA-M01]

Ask authors/readers for more resources

Employing CO2-based polymer in electronic applications should boost the consumption of CO2 feedstocks and provide the potential for non-permanent CO2 storage. In this study, polypropylene carbonate (PPC) is utilized as a dielectric and substrate material for organic thin film transistors (OTFTs) and organic inverter. The PPC dielectric film exhibits a surface energy of 47 mN m(-1), a dielectric constant of 3, a leakage current density of less than 10(-6) A cm(-2), and excellent compatibility with pentacene and PTCDI-C8 organic semiconductors. Bottom-gate top-contact OTFTs are fabricated using PPC as a dielectric; they exhibits good electrical performance at an operating voltage of 60 V, with electron and hole mobilities of 0.14 and 0.026 cm(2)V(-1)s(-1), and on-to-off ratios of 105 and 103, respectively. The fabricated p-and n-type transistors were connected to form a complementary inverter that operated at supply voltages of 20 V with high and low noise margins of 85 and 69%, respectively. The suitability of PPC as a substrate is demonstrated through the preparation of PPC sheets by casting method. The fabricated PPC sheets has a transparency of 92% and acceptable mechanical properties, yet they biodegraded rapidly through enzymatic degradation when using the lipase from Rhizhopus oryzae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available