4.7 Article

Perfect meta-absorber by using pod-like nanostructures with ultra-broadband, omnidirectional, and polarization-independent characteristics

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-25728-7

Keywords

-

Funding

  1. 100 Talents Program of Sun Yat-Sen University [76120-18821107]
  2. State Key Laboratory of Optoelectronic Materials and Technologies of Sun Yat-Sen University

Ask authors/readers for more resources

The on-chip perfect meta-absorber (PMA) is an important optical and thermal energy component in photovoltaics, thermal emitters, and energy harvesting applications. However, most reported PMAs rely on the complicated lithography techniques, which imposed a serious cost barrier on the development of practical applications, especially in the visible to near-infrared (NIR) wavelength range and at very large scales. Importantly, it is hard to realize PMA in the UV wavelength range by using current lithography techniques. In this article, we develop an ultra-broadband PMA by using natural lithography (NL) technique. The morphology of proposed PMA is randomly distributed pod-like nanostructures composed of a nanocomposite (Au/SiO2) covered a gold layer. It can be formed easily on Si substrate to function as an ultra-broadband, omnidirectional, and polarization-independent PMA by controlling the conditions of sputtering deposition and thermal annealing treatment. We experimentally realized an on-chip ultra-broadband PMA with almost 100% absorption spanned from UV-visible to NIR wavelength ranges. This cost-effective and high-efficiency approach would release the manufacturing barrier for previously reported PMAs and therefore open an avenue to the development of effectively energy harvesting, energy recycling, and heat liberation applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available