4.7 Article

Molecular marker assisted breeding and genome composition analysis of Zhengmai 7698, an elite winter wheat cultivar

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-18726-8

Keywords

-

Funding

  1. Major Program of Science & Technology of Henan [151100111400, 161100110500-0201]
  2. Science & Technology Open Cooperation Project of Henan [162106000013]

Ask authors/readers for more resources

Zhengmai 7698 is an elite winter wheat variety widely cultivated in the Southern regions of the Yellow-Huai River Valley of China. Here, we report the molecular markers used for breeding Zhengmai 7698 and the genome composition of this cultivar revealed using genome-wide SNPs. A total of 26 DNA markers derived from the genes controlling gluten protein quality, grain hardness, flour color, disease resistance, or pre-harvesting sprouting resistance were used during breeding. Consequently, Zhengmai 7698 had strong gluten, high grain hardness index, white flour color, and high levels of resistance to powdery mildew, stripe rust infections, and pre-harvesting sprouting. Using genome complexity reduction, 28,996 high-quality SNPs distributed on 21 wheat chromosomes were identified among Zhengmai 7698 and its three parental lines (4B269, Zhengmai 9405 and Zhoumai 16). Zhengmai 7698 shared 12,776, 14,411 and 16,085 SNPs with 4B269, Zhengmai 9405 and Zhoumai 16, respectively. Thus, the contributions of 4B269, Zhengmai 9405 and Zhoumai 16 to the genome of Zhengmai 7698 were comparable. Interestingly, Zhengmai 7698 had 307 unique SNPs that are absent in all three parents. We suggest that molecular markers facilitate selection of a wheat cultivar with multiple elite traits. Analysis of genome composition with SNPs may provide useful clues for further dissecting the genetic basis of improved wheat performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available