4.7 Article

Glucose repression can be alleviated by reducing glucose phosphorylation rate in Saccharomyces cerevisiae

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-20804-4

Keywords

-

Funding

  1. Energy Biosciences Institute
  2. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [2015R1D1A1A01057217]
  3. National Research Foundation of Korea [2015R1D1A1A01057217] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Microorganisms commonly exhibit preferential glucose consumption and diauxic growth when cultured in mixtures of glucose and other sugars. Although various genetic perturbations have alleviated the effects of glucose repression on consumption of specific sugars, a broadly applicable mechanism remains unknown. Here, we report that a reduction in the rate of glucose phosphorylation alleviates the effects of glucose repression in Saccharomyces cerevisiae. Through adaptive evolution under a mixture of xylose and the glucose analog 2-deoxyglucose, we isolated a mutant strain capable of simultaneously consuming glucose and xylose. Genome sequencing of the evolved mutant followed by CRISPR/Cas9-based reverse engineering revealed that mutations in the glucose phosphorylating enzymes (Hxk1, Hxk2, Glk1) were sufficient to confer simultaneous glucose and xylose utilization. We then found that varying hexokinase expression with an inducible promoter led to the simultaneous utilization of glucose and xylose. Interestingly, no mutations in sugar transporters occurred during the evolution, and no specific transporter played an indispensable role in simultaneous sugar utilization. Additionally, we demonstrated that slowing glucose consumption also enabled simultaneous utilization of glucose and galactose. These results suggest that the rate of intracellular glucose phosphorylation is a decisive factor for metabolic regulations of mixed sugars.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available