4.7 Article

COMSOL-Based Modeling and Simulation of SnO2/rGO Gas Sensor for Detection of NO2

Journal

SCIENTIFIC REPORTS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-20501-2

Keywords

-

Ask authors/readers for more resources

Despite SIESTA and COMSOL being increasingly used for the simulation of the sensing mechanism in the gas sensors, there are no modeling and simulation reports in literature for detection of NO2 based rGO/SnO2 sensors. In the present study, we model, simulate, and characterize an NO2 based rGO/SnO2 gas sensor using COMSOL by solving the Poisson's equations under associated boundary conditions of mass, heat and electrical transitions. To perform the simulation, we use an exposure model for presenting the required NO2, a heat transfer model to obtain a reaction temperature, and an electrical model to characterize the sensor's response in the presence of the gas. We characterize the sensor's response in the presence of different concentrations of NO2 at different working temperatures and compare the results with the experimental data, reported by Zhang et al. The results from the simulated sensor show a good agreement with the real sensor with some inconsistencies due to differences between the practical conditions in the real chamber and applied conditions to the analytical equations. The results also show that the method can be used to define and predict the behavior of the rGO-based gas sensors before undergoing the fabrication process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available