4.6 Article

Catalytic oxidation of CO over mesoporous copper-doped ceria catalysts via a facile CTAB-assisted synthesis

Journal

RSC ADVANCES
Volume 8, Issue 27, Pages 14888-14897

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ra02327a

Keywords

-

Funding

  1. Shandong Provincial Natural Science Foundation [ZR2017BB004]
  2. Shandong Province Major Science and Technology Innovation Project [2017CXGC1004]
  3. Shandong Province Key Research and Development Plan [2017GGX202004]
  4. National Natural Science Foundation of China [21777055]

Ask authors/readers for more resources

Nanosized copper-doped ceria CuCe catalysts with a large surface area and well-developed mesoporosity were synthesized by a surfactant-assisted co-precipitation method. The prepared catalysts with different Cu doping concentrations were characterized by XRD, DLS analysis, TEM, BET, Raman, H-2-TPR and in situ DRIFTS techniques. The influence of Cu content on their catalytic performance for CO oxidation was also studied. The XRD results indicate that at a lower content, the Cu partially incorporates into the CeO2 lattice to form a CuCe solid solution, whereas a higher Cu doping causes the formation of bulk CuO. Copper doping favors an increase in the surface area of the CuCe catalysts and the formation of oxygen vacancies, thereby improving the redox properties. The CuCe samples exhibit higher catalytic performance compared to bare CeO2 and CuO catalysts. This is ascribed to the synergistic interaction between copper oxide and ceria. In particular, the Cu0.1Ce catalyst shows the highest catalytic performance (T-50 = 59 degrees C), as well as excellent stability. The in situ DRIFTS results show that CO adsorbed on surface Cu+ (Cu+-CO species) can easily react with the active oxygen, while stronger adsorption of carbonate-like species causes catalyst deactivation during the reaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available