4.6 Article

Electrochemistry and microbiology of microbial fuel cells treating marine sediments polluted with heavy metals

Journal

RSC ADVANCES
Volume 8, Issue 34, Pages 18800-18813

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ra01711e

Keywords

-

Funding

  1. Universiti Sains Malaysia Global Fellowship (USMGF)
  2. RUI grant [1001/PTEKIND/8011044]

Ask authors/readers for more resources

The industrial contamination of marine sediments with chromium, copper and nickel in Penang, Malaysia was addressed with bio-remediation, coupled with power generation, using in situ sediment microbial cells (SMFCs) under various conditions. The efficiency of aerated sediment microbial fuel cells (A-SMFCs) and non-aerated sediment microbial fuel cells (NA-SMFCs) was studied. The A-SMFCs generated a voltage of 580.5 mV between 50 and 60 days, while NA-SMFCs produced a voltage of 510 mV between 60 and 80 days. The cell design point for A-SMFCs was 2 k, while for NA-SMFCs it was 200 . In both SMFCs, the maximum current values relating to forward scanning, reverse scanning and oxidation/reduction peaks were recorded on the 80(th) day. The anode showed maximum additional capacitance on the 80(th) day (A-SMFC: 2.7 F cm(-2); and NA-SMFC: 2.2 F cm(-2)). The whole cell electrochemical impedance using the Nyquist model was 21 for A-SMFCs and 15 for NA-SMFCs. After glucose enrichment, the impedance of A-SMFCs was 24.3 and 14.6 for NA-SMFCs. After 60 days, the A-SMFCs reduced the maximum amount of Cr(vi) to Cr(iii) ions (80.70%) and Cu(ii) to Cu(i) ions (72.72%), and showed maximum intracellular uptake of Ni(ii) ions (80.37%); the optimum remediation efficiency of NA-SMFCs was after 80 days toward Cr(vi) ions (67.36%), Cu(ii) ions (59.36%) and Ni(ii) ions (52.74%). Both SMFCs showed highest heavy metal reduction and power generation at a pH of 7.0. SEM images and 16S rRNA gene analysis showed a diverse bacterial community in both A-SMFCs and NA-SMFCs. The performance of A-SMFCs showed that they could be exercised as durable and efficient technology for power production and the detoxification of heavy metal sediments. The NA-SMFCs could also be employed where anaerobic fermentation is required.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available