4.5 Article

Approximation Theory Applied to DEM Vertical Accuracy Assessment

Journal

TRANSACTIONS IN GIS
Volume 16, Issue 3, Pages 397-410

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1467-9671.2012.01343.x

Keywords

-

Categories

Ask authors/readers for more resources

Existing research on DEM vertical accuracy assessment uses mainly statistical methods, in particular variance and RMSE which are both based on the error propagation theory in statistics. This article demonstrates that error propagation theory is not applicable because the critical assumption behind it cannot be satisfied. In fact, the non-random, non-normal, and non-stationary nature of DEM error makes it very challenging to apply statistical methods. This article presents approximation theory as a new methodology and illustrates its application to DEMs created by linear interpolation using contour lines as the source data. Applying approximation theory, a DEM's accuracy is determined by the largest error of any point (not samples) in the entire study area. The error at a point is bounded by max(|dnode|+M2h2/8) where |dnode| is the error in the source data used to interpolate the point, M2 is the maximum norm of the second-order derivative which can be interpreted as curvature, and h is the length of the line on which linear interpolation is conducted. The article explains how to compute each term and illustrates how this new methodology based on approximation theory effectively facilitates DEM accuracy assessment and quality control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available