4.7 Article

Radon-Linear Canonical Ambiguity Function-Based Detection and Estimation Method for Marine Target With Micromotion

Journal

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Volume 53, Issue 4, Pages 2225-2240

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2014.2358456

Keywords

Long-time coherent integration; marine target; micro-Doppler (m-D); quadratic frequency-modulated (QFM) signal; Radon-linear canonical ambiguity function (RLCAF)

Funding

  1. National Natural Science Foundation of China [61471382, 61401495, 61201445, 61179017]
  2. special funds of Taishan Scholars construction engineering of China

Ask authors/readers for more resources

Robust and effective detection of a marine target is a challenging task due to the complex sea environment and target's motion. A long-time coherent integration technique is one of the most useful methods for the improvement of radar detection ability, whereas it would easily run into the across range unit (ARU) and Doppler frequency migration (DFM) effects resulting distributed energy in the time and frequency domain. In this paper, the micro-Doppler (m-D) signature of a marine target is employed for detection and modeled as a quadratic frequency-modulated signal. Furthermore, a novel long-time coherent integration method, i.e., Radon-linear canonical ambiguity function (RLCAF), is proposed to detect and estimate the m-D signal without the ARU and DFM effects. The observation values of a micromotion target are first extracted by searching along the moving trajectory. Then these values are carried out with the long-time instantaneous autocorrelation function for reduction of the signal order, and well matched and accumulated in the RLCAF domain using extra three degrees of freedom. It can be verified that the proposed RLCAF can be regarded as a generalization of the popular ambiguity function, fractional Fourier transform, fractional ambiguity function, and Radon-linear canonical transform. Experiments with simulated and real radar data sets indicate that the RLCAF can achieve higher integration gain and detection probability of a marine target in a low signal-to-clutter ratio environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available