4.7 Article

Estimation of Forest Biomass From Two-Level Model Inversion of Single-Pass InSAR Data

Journal

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Volume 53, Issue 9, Pages 5083-5099

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2015.2417205

Keywords

Aboveground biomass (AGB); canopy density; forest height; interferometric model; interferometric synthetic aperture radar (InSAR); TanDEM-X (TDM); two-level model (TLM)

Funding

  1. Swedish National Space Board
  2. European Union's Seventh Framework Programme (Advanced SAR) [606971]

Ask authors/readers for more resources

A model for aboveground biomass estimation from single-pass interferometric synthetic aperture radar (InSAR) data is presented. Forest height and canopy density estimates Delta h and eta(0), respectively, obtained from two-level model (TLM) inversion, are used as biomass predictors. Eighteen bistatic VV-polarized TanDEM-X (TDM) acquisitions are used, made over two Swedish test sites in the summers of 2011, 2012, and 2013 (nominal incidence angle: 41 degrees; height-of-ambiguity: 32-63 m). Remningstorp features a hemiboreal forest in southern Sweden, with flat topography and where 32 circular plots have been sampled between 2010 and 2011 (area: 0.5 ha; biomass: 42-242 t/ha; height: 14-32 m). Krycklan features a boreal forest in northern Sweden, 720-km north-northeast from Remningstorp, with significant topography and where 31 stands have been sampled in 2008 (area: 2.4-26.3 ha; biomass: 23-183 t/ha; height: 7-21 m). A high-resolution digital terrain model has been used as ground reference during InSAR processing. For the aforementioned plots and stands and if the same acquisition is used for model training and validation, the new model explains 65%-89% of the observed variance, with root-mean-square error (RMSE) of 12%-19% (median: 15%). By fixing two of the three model parameters, accurate biomass estimation can also be done when different acquisitions or different test sites are used for model training and validation, with RMSE of 12%-56% (median: 17%). Compared with a simple scaling model computing biomass from the phase center elevation above ground, the proposed model shows significantly better performance in Remningstorp, as it accounts for the large canopy density variations caused by active management. In Krycklan, the two models show similar performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available