4.7 Article

Zinc Protects Articular Chondrocytes through Changes in Nrf2-Mediated Antioxidants, Cytokines and Matrix Metalloproteinases

Journal

NUTRIENTS
Volume 10, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/nu10040471

Keywords

osteoarthritis; zinc; antioxidant; cytokine; matrix metalloproteinase

Funding

  1. Ministry of Science and Technology, Taiwan [104-2320-B-037-024-MY3]

Ask authors/readers for more resources

Osteoarthritis (OA) is an age-related degenerative joint disease characterized by high oxidative stress, chondrocyte death and cartilage damage. Zinc has been implicated in the antioxidant capacity of the cell, and its deficiency might inhibit chondrocyte proliferation. The present study examined the potential of zinc as a preventive supplement against OA using the in vitro chondrosarcoma cell line SW1353 and an in vivo Wistar rat model to mimic OA progress induced by monosodium iodoacetate (MIA). The results demonstrated that, in SW1353 cells, 5 mu M MIA exposure increased oxidative stress and decreased the expression of GPx1 and Mn-SOD but still increased GSH levels and HO-1 expression and enhanced the expression of interleukin (IL)-10, IL-1 beta, and matrix metalloproteinase (MMP)-13. Zinc addition could block these changes. Besides, the expression of Nrf2 and phosphorylated (p)-Akt was dramatically increased, implicating the p-Akt/Nrf2 pathway in the effects of zinc on MIA-treated cells. A rat model achieved similar results as those of cell culture, and 1.6 mg/kg/day of zinc supplementation is sufficient to prevent OA progress, while 8.0 mg/kg/day of zinc supplementation does not have a better effect. These findings indicate that zinc supplementation exerts a preventive effect with respect to MIA-induced OA progress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available