4.8 Article

Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2

Journal

NATURE CLIMATE CHANGE
Volume 8, Issue 2, Pages 146-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41558-017-0057-x

Keywords

-

Funding

  1. Max Planck Society for the Advancement of Science
  2. ETH Zurich (Swiss Federal Institute of Technology in Zurich)
  3. European Union [283080]
  4. United Kingdom Shelf Sea Biogeochemistry Blue Carbon project - Natural Environment Research Council [NE/K00168X/1]
  5. Cluster of Excellence 'CliSAP', University of Hamburg - German Research Foundation (DFG) [EXC177]
  6. German Research Foundation (DFG)
  7. United Kingdom Shelf Sea Biogeochemistry Blue Carbon project (Department for Energy and Climate Change)
  8. United Kingdom Shelf Sea Biogeochemistry Blue Carbon project (Department for Environment, Food and Rural Affairs)

Ask authors/readers for more resources

The increase of atmospheric CO2 (ref. (1)) has been predicted to impact the seasonal cycle of inorganic carbon in the global ocean(2,3), yet the observational evidence to verify this prediction has been missing. Here, using an observation-based product of the oceanic partial pressure of CO2 (p(CO2)) covering the past 34 years, we find that the winter-to-summer difference of the p(CO2) has increased on average by 2.2 +/- 0.4 mu atm per decade from 1982 to 2015 poleward of 10 degrees latitude. This is largely in agreement with the trend expected from thermodynamic considerations. Most of the increase stems from the seasonality of the drivers acting on an increasing oceanic p(CO2) caused by the uptake of anthropogenic CO2 from the atmosphere. In the high latitudes, the concurrent ocean-acidification-induced changes in the buffer capacity of the ocean enhance this effect. This strengthening of the seasonal winter-to-summer difference pushes the global ocean towards critical thresholds earlier, inducing stress to ocean ecosystems and fisheries(4). Our study provides observational evidence for this strengthening seasonal difference in the oceanic carbon cycle on a global scale, illustrating the inevitable consequences of anthropogenic CO2 emissions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available