4.3 Article

Multiscale 'tomography-to-simulation' framework for granular matter: the road ahead

Journal

GEOTECHNIQUE LETTERS
Volume 2, Issue -, Pages 135-139

Publisher

ICE PUBLISHING
DOI: 10.1680/geolett.12.00023

Keywords

constitutive relations; deformation; numerical modelling; plasticity

Ask authors/readers for more resources

A roadmap is presented to transition seamlessly from an image to a predictive computational model for granular materials. So far, constitutive modelling in granular materials has been based on macroscopic experimental observations. Here, the point of departure is the basic granular scale where kinematics, contact forces and fabric control the macroscopic mechanical behaviour of the material. New computational and analytical tools are presented that allow for more accurate measurement of kinematics and inference of contact forces, directly from imaging tools (e. g. high-energy tomography). These grain-scale data are then used to construct powerful multiscale models that can predict the emergent behaviour of granular materials, without resorting to phenomenology, but can rather directly unravel the micro-mechanical origin of macroscopic behaviour. The aim of these tools is to furnish a 'tomography-to-simulation' framework, where experimental techniques, imaging procedures, and computational models are seamlessly integrated. These integrated techniques will help define a new physics-based approach for modelling and characterisation of granular soils in the near future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available