3.9 Article

Representing Visual Complexity of Images Using a 3D Feature Space Based on Structure, Noise, and Diversity

Publisher

FUJI TECHNOLOGY PRESS LTD
DOI: 10.20965/jaciii.2012.p0631

Keywords

image processing; feature space; clustering algorithm; fuzzy inference system; visual complexity

Funding

  1. Japanese Government via the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Scholarship

Ask authors/readers for more resources

A 3D feature space is proposed to represent visual complexity of images based on Structure, Noise, and Diversity (SND) features that are extracted from the images. By representing images using the proposed feature space, the human classification of visual complexity of images as being simple, medium, or complex can be implied from the structure of the space. The structure of the SND space as determined by a clustering algorithm and a fuzzy inference system are then used to assign visual complexity labels and values to the images respectively. Experiments on Corel 1000A dataset, Web-crawled, and Caltech 256 object category dataset with 1000, 9907, and 30607 images respectively using MATLAB demonstrate the capability of the 3D feature space to effectively represent the visual complexity. The proposal provides a richer understanding about the visual complexity of images which has applications in evaluations to determine the capacity and feasibility of the images to tolerate image processing tasks such as watermarking and compression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available