4.5 Article

Ball and Beam Balancing Mechanism Actuated With Pneumatic Artificial Muscles

Publisher

ASME
DOI: 10.1115/1.4040490

Keywords

dynamics; control; mechanism design

Ask authors/readers for more resources

The paper presents the results of modeling and control of an original and unique ball-on-beam system with a pneumatic artificial muscle pair in an antagonistic configuration. This system represents a class of under-actuated, high-order nonlinear systems, which are characterized by an open-loop unstable equilibrium point. Since pneumatic muscles have elastic, nonlinear characteristics, they are more difficult to control. Considering that an additional nonlinearity is added to the system which makes it harder to stabilize. The nonlinear mathematical model has been derived based on the physical model of the ball-on-beam mechanism, the beam rotating by using an antagonistic muscle pair and the pneumatic muscle actuated by a proportional valve. Based on the non-linear model, the linearized equations of motion have been derived and a control-oriented model has been developed, which is used in the state feedback controller design procedure. The proposed state feedback controller has been verified by means of computer simulations and experimentally on the laboratory setup. The simulation and experimental results have shown that the state feedback controller can stabilize the hall-on-beam system around an equilibrium position in the presence of external disturbances and to track a reference trajectory with a small tracking error.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available