4.7 Article

Automated Feature Design for Numeric Sequence Classification by Genetic Programming

Journal

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
Volume 19, Issue 4, Pages 474-489

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEVC.2014.2341451

Keywords

Feature design; genetic programming; machine learning; pattern recognition; sequence classification; time series classification; time series data mining

Funding

  1. Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program

Ask authors/readers for more resources

Pattern recognition methods rely on maximum-information, minimum-dimension feature sets to reliably perform classification and regression tasks. Many methods exist to reduce feature set dimensionality and construct improved features from an initial set; however, there are few general approaches for the design of features from numeric sequences. Any information lost in preprocessing or feature measurement cannot be recreated during pattern recognition. General approaches are needed to extend pattern recognition to include feature design and selection for numeric sequences, such as time series, within the learning process itself. This paper proposes a novel genetic programming (GP) approach to automated feature design called Autofead. In this method, a GP variant evolves a population of candidate features built from a library of sequence-handling functions. Numerical optimization methods, included through a hybrid approach, ensure that the fitness of candidate algorithms is measured using optimal parameter values. Autofead represents the first automated feature design system for numeric sequences to leverage the power and efficiency of both numerical optimization and standard pattern recognition algorithms. Potential applications include the monitoring of electrocardiogram signals for indications of heart failure, network traffic analysis for intrusion detection systems, vibration measurement for bearing condition determination in rotating machinery, and credit card activity for fraud detection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available