4.5 Article

Enhanced Targeted Energy Transfer by Vibro Impact Cubic Nonlinear Energy Sink

Journal

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S1758825118500618

Keywords

Targeted energy transfer; nonlinear energy sink; vibro-impact oscillators; passive vibration absorber; nonlinear dynamics

Categories

Funding

  1. National Natural Science Foundation of China [11632011, 11702170, 11472170, 51421092, 11572189]

Ask authors/readers for more resources

Passive targeted energy transfer (TET) that describes a highly efficient manner of energy absorption is considerably enhanced by a new form of absorber proposed in this paper. The absorber is attached to the primary linear oscillator (LO) through cubic stiffness and bilateral harriers that set to induce vibro-impact (VI). Both essential nonlinearity and non-smooth nonlinearity are considered. Energy pumping phenomenon is found, and complexification averaging method is used to give an analytical treatment for the essential stiffness nonlinearity. At a low level of impulse excitation where energy pumping of nonlinear energy sink (NES) does not occur, by introducing VI energy pumping is brought up. At the optimal TET state, the vibro-impact cubic (VIC) absorber improves the efficiency of cubic NES on energy reduction to a certain degree. For a two-degree-of-freedom LO, the new absorber can absorb most energy of the broadband excitation which is a novel improvement compared with normal NES. Broadband excitations like input with sufficient bandwidth and random signals are found to be absorbed extensively by the VIC NES, meaning that the VIC NES as a nonlinear passive vibration absorber can be very efficient on broadband vibration energy absorption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available