4.2 Article

Coarse-to-fine online learning for hand segmentation in egocentric video

Journal

Publisher

SPRINGER
DOI: 10.1186/s13640-018-0262-1

Keywords

Hand detection; Hand segmentation; Egocentric; Unsupervised online learning

Ask authors/readers for more resources

Hand segmentation is one of the most fundamental and crucial steps for egocentric human-computer interaction. The special egocentric view brings new challenges to hand segmentation tasks, such as the unpredictable environmental conditions. The performance of traditional hand segmentation methods depend on abundant manually labeled training data. However, these approaches do not appropriately capture the whole properties of egocentric human-computer interaction for neglecting the user-specific context. It is only necessary to build a personalized hand model of the active user. Based on this observation, we propose an online-learning hand segmentation approach without using manually labeled data for training. Our approach consists of top-down classifications and bottom-up optimizations. More specifically, we divide the segmentation task into three parts, a frame-level hand detection which detects the presence of the interactive hand using motion saliency and initializes hand masks for online learning, a superpixel-level hand classification which coarsely segments hand regions from which stable samples are selected for next level, and a pixel-level hand classification which produces a fine-grained hand segmentation. Based on the pixel-level classification result, we update the hand appearance model and optimize the upper layer classifier and detector. This online-learning strategy makes our approach robust to varying illumination conditions and hand appearances. Experimental results demonstrate the robustness of our approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available