4.6 Article

Synthesis of 2D MOF having potential for efficient dye adsorption and catalytic applications

Journal

CATALYSIS SCIENCE & TECHNOLOGY
Volume 8, Issue 16, Pages -

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cy00579f

Keywords

-

Funding

  1. Russian Foundation for Basic Research [18-29-04047]
  2. Tomsk Polytechnic University Competitiveness Enhancement Program grant [VIU-195/2018]
  3. Hercules Foundation [AUGE/11/029]
  4. Special Research Fund (BOF) - UGent [01N03217]

Ask authors/readers for more resources

Synthesis of 2D MOFs is often sensitive to the reaction conditions like temperature and solvent etc. Cu(ii)-5-azidoisophthalate MOF (Cu(ii)-5N(3)IP) has been synthesized at room temperature as well as under solvothermal conditions. The azide functional group remained stable during solvothermal synthesis at 85 degrees C. Cu(ii)-5N(3)IP crystallized in a Kagome-type structure. Typical Cu-2 paddle-wheels are connected to each other by 5N(3)IP ligands in infinite 2D sheets in the (001) plane, featuring 1D infinite channels within each layer. This MOF is used for the adsorption of methylene blue (MB), rhodamine B (RhB), methyl orange (MO), and Congo red (CR). The adsorption is selective to the dimensions, shapes and ionic strengths of the dyes. Cu(ii)-5N(3)IP exhibited adsorption rates in the order MB > CR > RhB > MO. Cu(ii)-5N(3)IP is used as a catalyst for aerobic oxidation and Knoevenagel condensation. 3-10 mol% of Cu-5N(3)IP selectively catalyzes the oxidation of benzyl alcohol to benzaldehyde in 9-20 h at 60 degrees C. In Knoevenagel condensation, the reaction of both unsubstituted and substituted benzaldehydes at room temperature was observed at a very low catalyst loading of 3 mol% of MOF within a short time of 3-60 min. This 2D MOF has proved to be more efficient for dye adsorption and the catalytic applications under investigation (such as alcohol oxidation and Knoevenagel condensation) than its analogous 3D or 0D materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available