4.6 Article

Daylighting and visual comfort of oriental sun responsive skins: A parametric analysis

Journal

BUILDING SIMULATION
Volume 11, Issue 4, Pages 663-676

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s12273-018-0433-0

Keywords

oriental skin; daylight performance; visual comfort; algorithmic simulation; parametric study; optimization

Ask authors/readers for more resources

This study reports on developing an innovative approach for the parametric analysis of daylighting and visual comfort, through a sun responsive shading system. The objective is estimating the annual daylight metrics and indoor glare discomfort. To this end, a review of the literature was carried out on three key concepts: smart facades, visual comfort, and parametric design, in order to develop a dynamic pattern of an oriental system for enhancing the daylight and visual performance. Afterwards, two geometrical components (Rosette modules and louvers) were applied, using Grasshopper plug-in for Rhino and daylighting plug-in DIVA, to investigate the indoor daylight quality through different geometrical and physical properties. This resulted in generating 6480 design variants, when several variables (rotation, distance to facade, time hours, transmittance properties and colors) that affect incoming daylight as well as visual comfort performance in a single office space in the hot-arid climate of Tehran were taken into account. Interactive correlations between the overall performance of kinetic patterns and visual performance were investigated through an optimization process. Analyses showed that the proposed approach is capable of significantly improving the shading flexibility to control daylight metrics and glare, via a full potential adaptive pattern to achieve the maximum visual comfort level based on LEEDv4 certificate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available