4.6 Article

High-throughput intensity diffraction tomography with a computational microscope

Journal

BIOMEDICAL OPTICS EXPRESS
Volume 9, Issue 5, Pages 2130-2141

Publisher

OPTICAL SOC AMER
DOI: 10.1364/BOE.9.002130

Keywords

-

Funding

  1. National Science Foundation (NSF) Industry/University Cooperative Research Center for Biophotonic Sensors and Systems [IIP-1068070]

Ask authors/readers for more resources

We demonstrate a motion-free intensity diffraction tomography technique that enables the direct inversion of 3D phase and absorption from intensity-only measurements for weakly scattering samples. We derive a novel linear forward model featuring slice-wise phase and absorption transfer functions using angled illumination. This new framework facilitates flexible and efficient data acquisition, enabling arbitrary sampling of the illumination angles. The reconstruction algorithm performs 3D synthetic aperture using a robust computation and memory efficient slice-wise deconvolution to achieve resolution up to the incoherent limit. We demonstrate our technique with thick biological samples having both sparse 3D structures and dense cell clusters. We further investigate the limitation of our technique when imaging strongly scattering samples. Imaging performance and the influence of multiple scattering is evaluated using a 3D sample consisting of stacked phase and absorption resolution targets. This computational microscopy system is directly built on a standard commercial microscope with a simple LED array source add-on, and promises broad applications by leveraging the ubiquitous microscopy platforms with minimal hardware modifications. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available