4.8 Article

Surface Engineering of TiO2 ETL for Highly Efficient and Hysteresis-Less Planar Perovskite Solar Cell (21.4%) with Enhanced Open-Circuit Voltage and Stability

Journal

ADVANCED ENERGY MATERIALS
Volume 8, Issue 23, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201800794

Keywords

amorphous SnO2; c-TiO2; efficiency; perovskites; stability; UV stability

Funding

  1. ENI S.p.A under the MITEI Solar Frontier Center
  2. Laboratory of Photonics and Interfaces (LPI) at Ecole Polytechnique Federale de Lausanne (EPFL)
  3. School of Engineering at Hong Kong University of Science and Technology

Ask authors/readers for more resources

Interfacial studies and band alignment engineering on the electron transport layer (ETL) play a key role for fabrication of high-performance perovskite solar cells (PSCs). Here, an amorphous layer of SnO2 (a-SnO2) between the TiO2 ETL and the perovskite absorber is inserted and the charge transport properties of the device are studied. The double-layer structure of TiO2 compact layer (c-TiO2) and a-SnO2 ETL leads to modification of interface energetics, resulting in improved charge collection and decreased carrier recombination in PSCs. The optimized device based on a-SnO2/c-TiO2 ETL shows a maximum power conversion efficiency (PCE) of 21.4% as compared to 19.33% for c-TiO2 based device. Moreover, the modified device demonstrates a maximum open-circuit voltage (V-oc) of 1.223 V with 387 mV loss in potential, which is among the highest reported value for PSCs with negligible hysteresis. The stability results show that the device on c-TiO2/a-SnO2 retains about 91% of its initial PCE value after 500 h light illumination, which is higher than pure c-TiO2 (67%) based devices. Interestingly, using a-SnO2/c-TiO2 ETL the PCE loss was only 10% of initial value under continuous UV light illumination after 30 h, which is higher than that of c-TiO2 based device (28% PCE loss).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available