4.8 Article

Extending the Continuous Operating Lifetime of Perovskite Solar Cells with a Molybdenum Disulfide Hole Extraction Interlayer

Journal

ADVANCED ENERGY MATERIALS
Volume 8, Issue 12, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201702287

Keywords

high continuous operating lifetime; hole extraction interlayers; molybdenum disulfide; perovskite solar cells; transient electrical characterization

Funding

  1. European Union [696656 - GrapheneCore1]

Ask authors/readers for more resources

Solution-processed organic-inorganic lead halide perovskite solar cells (PSCs) are considered as one of the most promising photovoltaic technologies thanks to both high performance and low manufacturing cost. However, a key challenge of this technology is the lack of ambient stability over prolonged solar irradiation under continuous operating conditions. In fact, only a few studies (carried out in inert atmosphere) already approach the industrial standards. Here, it is shown how the introduction of MoS2 flakes as a hole transport interlayer in inverted planar PSCs results in a power conversion efficiency (PCE) of approximate to 17%, overcoming the one of the standard reference devices. Furthermore, this approach allows the realization of ultrastable PSCs, stressed in ambient conditions and working at continuous maximum power point. In particular, the photovoltaic performances of the proposed PSCs represent the current state-of-the-art in terms of lifetime, retaining 80% of their initial performance after 568 h of continuous stress test, thus approaching the industrial stability standards. Moreover, it is further demonstrated the feasibility of this approach by fabricating large-area PSCs (0.5 cm(2) active area) with MoS2 as the interlayer. These large-area PSCs show improved performance (i.e., PCE = 13.17%) when compared with the standard devices (PCE = 10.64%).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available