4.8 Article

Toward Predicting Efficiency of Organic Solar Cells via Machine Learning and Improved Descriptors

Journal

ADVANCED ENERGY MATERIALS
Volume 8, Issue 24, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201801032

Keywords

DFT calculations; machine learning; organic electronics; photovoltaic devices; solar cells

Funding

  1. National Natural Science Foundation of China [21673109, 21722302]
  2. EPSRC [EP/N021754/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/N021754/1] Funding Source: researchfish

Ask authors/readers for more resources

To design efficient materials for organic photovoltaics (OPVs), it is essential to identify the largest number of parameters that control their properties and build a model using these parameters (known as descriptors) for the prediction of the power conversion efficiency (PCE). By constructing a dataset for 280 small molecule OPV systems, it is found that for all high-performing devices, frontier molecular orbitals of donor molecules are nearly degenerated and in such cases, orbitals other than just highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are involved in exciton formation, exciton dissociation, and hole transport processes influencing the macroscopic properties of OPVs. Machine learning approaches, including random forest, gradient boosting, deep neural network are used to build models for the prediction of PCE using 13 important microscopic properties of organic materials as descriptors. Quite impressive performance of the gradient boosting model (Pearson's coefficient = 0.79) indicates that it can certainly be applied to high-throughput virtual screening of promising new donor molecules for high-efficiency OPVs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available