4.8 Article

Vacuum Deposited Triple-Cation Mixed-Halide Perovskite Solar Cells

Journal

ADVANCED ENERGY MATERIALS
Volume 8, Issue 14, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201703506

Keywords

doping; mixed cations; perovskites; vacuum deposition; wide bandgap

Funding

  1. European Union H2020 project INFORM [675867]
  2. Spanish Ministry of Economy and Competitiveness (MINECO) via the Unidad de Excelencia Maria de Maeztu [MDM-2015-0538, MAT2017-88821-R, MAT2017-88905-P, PCIN-2015-255]
  3. Dutch Ministry of Economic Affairs [TEZ0214010]
  4. Generalitat Valenciana [Prometeo/2016/135, SEJI2017/2017/012]
  5. Grisolia Grant [GRISOLIA/2015/A/146]
  6. MINECO

Ask authors/readers for more resources

Hybrid lead halide perovskites are promising materials for future photovoltaics applications. Their spectral response can be readily tuned by controlling the halide composition, while their stability is strongly dependent on the film morphology and on the type of organic cation used. Mixed cation and mixed halide systems have led to the most efficient and stable perovskite solar cells reported, so far they are prepared exclusively by solutionprocessing. This might be due to the technical difficulties associated with the vacuum deposition from multiple thermal sources, requiring a high level of control over the deposition rate of each precursor during the film formation. In this report, thermal vacuum deposition with multiple sources (3 and 4) is used to prepare for the first time, multications/anions perovskite compounds. These thin-film absorbers are implemented into fully vacuum deposited solar cells using doped organic semiconductors. A maximum power conversion efficiency of 16% is obtained, with promising device stability. The importance of the control over the film morphology is highlighted, which differs substantially when these compounds are vacuum processed. Avenues to improve the morphology and hence the performance of fully vacuum processed multications/anions perovskite solar cells are proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available