4.0 Article

High-Throughput Synthesis and Characterization of Eu Doped BaxSr2-xSiO4 Thin Film Phosphors

Journal

ACS COMBINATORIAL SCIENCE
Volume 20, Issue 7, Pages 451-460

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscombsci.8b00045

Keywords

phosphors; Eu; orthosilicate; combinatorial; high-throughput; thin film; PVD; fluorescence

Funding

  1. EPSRC [EP/K00509X/1] Funding Source: UKRI

Ask authors/readers for more resources

High-throughput techniques have been employed for the synthesis and characterization of thin film phosphors of Eu-doped Ba-x Sr-2 _x SiO4 . Direct synthesis from evaporation of the constituent elements under a flux of atomic oxygen on a sapphire substrate at 850 degrees C was used to directly produce thin film libraries (415 nm thickness) of the crystalline orthosilicate phase with the desired compositional variation (0.24 > x > 1.86). The orthosilicate phase could be synthesized as a pure, or predominantly pure, phase. Annealing the as synthesized library in a reducing atmosphere resulted in the reduction of the Eu while retaining the orthosilicate phase, and resulted in a materials thin film library where fluorescence excited by blue light (450 nm) was observable by the naked eye. Parallel screening of the fluorescence from the combinatorial libraries of Eu doped BaxSr2 -xSiO4 has been implemented by imaging the fluorescent radiation over the library using a monochrome digital camera using a series of color filters. Informatics tools have been developed to allow the 1931 CIE color coordinates and the relative quantum efficiencies of the materials library to be rapidly assessed and mapped against composition, crystal structure and phase purity. The range of compositions gave values of CIE x between 0.17 and 0.52 and CIEy between 0.48 and 0.69 with relative efficiencies in the range 2.0 X 10(-4)7.6 x 10(-4) . Good agreement was obtained between the thin film phosphors and the fluorescence characteristics of a number of corresponding bulk phosphor powders. The thermal quenching of fluorescence in the thin film libraries was also measured in the temperature range 25-130 degrees C: The phase purity of the thin film was found to significantly influence both the relative quantum efficiency and the thermal quenching of the fluorescence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available