4.8 Review

Extracting Knowledge from Data through Catalysis Informatics

Journal

ACS CATALYSIS
Volume 8, Issue 8, Pages 7403-7429

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.8b01708

Keywords

kinetics; machine learning; data science; heterogeneous catalysis; multiscale modeling; surface science; cheminformatics; materials informatics

Funding

  1. U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy (EERE), Advanced Manufacturing Office Next Generation RD Projects [DE-AC07-05ID14517]

Ask authors/readers for more resources

Catalysis informatics is a distinct subfield that lies at the intersection of cheminformatics and materials informatics but with distinctive challenges arising from the dynamic, surface-sensitive, and multiscale nature of heterogeneous catalysis. The ideas behind catalysis informatics can be traced back decades, but the field is only recently emerging due to advances in data infrastructure, statistics, machine learning, and computational methods. In this work, we review the field from early works on expert systems and knowledge engines to more recent approaches utilizing machine-learning and uncertainty quantification. The data information knowledge hierarchy is introduced and used to classify various developments. The chemical master equation and microkinetic models are proposed as a quantitative representation of catalysis knowledge, which can be used to generate explanative and predictive hypotheses for the understanding and discovery of catalytic materials. We discuss future prospects for the field, including improved quantitative coupling of experiment/theory, advanced microkinetic models, and the development of open-source software tools. Ultimately, integration of existing chemical and physical models with emerging statistical and computational tools presents a promising route toward the automated design, discovery, and optimization of heterogeneous catalytic processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available