4.4 Article Proceedings Paper

Modal Propagation and Crosstalk Analysis in Coupled Graphene Nanoribbons

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEMC.2015.2406072

Keywords

Crosstalk; graphene; multiconductor transmission lines; nanoribbon; spatial dispersion

Ask authors/readers for more resources

A full-wave analysis of the fundamental quasi-TEM modes supported by multiple graphene nanoribbons above a ground plane is presented, aimed at characterizing crosstalk in graphene multiconductor lines. A method-of-moments discretization of the relevant electric-field integral equation is performed. Assuming first a local scalar conductivity, an efficient spatial-domain approach with subsectional basis functions is assuming first a local scalar conductivity, a spatial-domain approach with subsectional basis functions is developed. This allows for the efficient treatment of nanoribbons with wide transverse separations, and can be expanded to include in the simulation model spatial nonuniformity of the graphene conductivity. This spatial-domain formulation is then extended to treat the case of weakly nonlocal conductivity, via an original integro-differential approach derived by approximating a recent full spectral graphene conductivity model in the limit of low wavenumbers. Numerical results are provided for propagation constants and characteristic impedances of two identical coupled graphene nanoribbons; on this basis, a crosstalk analysis is performed by means of the modal decomposition method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available