4.8 Article

Rationalizing the Reactivity of Bimetallic Molecular Catalysts for CO2 Hydrogenation

Journal

ACS CATALYSIS
Volume 8, Issue 6, Pages 4955-4968

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.8b00803

Keywords

bimetallic complexes; H-2 deprotonation; CO2 hydrogenation; basicity; steric hindrance; hydricity

Funding

  1. Inorganometallic Catalyst Design Center, an EFRC - DOE, Office of Basic Energy Sciences [DE-SC0012702]
  2. National Energy Research Scientific Computing Center [36159]
  3. National Science Foundation [CHE-1665010]

Ask authors/readers for more resources

We have recently reported the heterobimetallic nickel gallium complex, NiGaL (where L represents the tris(phosphinoamido)amine ligand, [N(o-(NCH(2)Pi-Pr-2,) C6H4)(3)](3-)), which is the most active Ni-based molecular catalyst for CO2 hydrogenation to date. Understanding the reaction mechanism of this catalytic system and identifying the factors that govern its catalytic activity are important in order to design even more efficient base metal catalysts. Here, we present a computational study of possible reaction pathways for CO, hydrogenation catalyzed by NiGaL. The most favorable predicted pathway for formate production agrees well with key experimental observations and is defined by four elementary steps: (1) H, binding to the Ni center, (2) deprotonation of the H, adduct, (3) hydride transfer to CO2 to form a formate adduct, and (4) formate release to regenerate NiGaL. The overall catalytic process has two main time periods: an induction period, during which the deprotonation of the H-2 adduct by exogenous base is predicted to be rate-limiting, followed by a subsequent period where the produced formate assists in deprotonation by acting as a proton shuttle between the H-2 adduct and exogenous base. The barrier for H-2 adduct deprotonation is governed predominantly by the steric hindrance associated with the exogenous base and is found to be dramatically lowered by formate assistance. Once sufficient formate has been generated, the catalysis enters the steady-state period, during which hydride transfer to CO2 is predicted to become rate-limiting once sufficient formate has been generated and the reaction rate remains constant until the base is nearly consumed. For hydride transfer to CO2 the free energy of activation was found to depend linearly on the thermodynamic hydricity for a series of bimetallic HM1M2L-complexes, providing a simple and efficient strategy for screening other bimetallic catalysts. Furthermore, the relative binding energies of H-2 and formate were analyzed to predict the ability of the bimetallics to facilitate the catalytic turnover. The predicted trends and structure activity relationships arising from these computational calculations can be further utilized for the rational design of more efficient catalysts for CO2 hydrogenation and other hydride transfer processes for which reactive M-H species are generated in the presence of a Lewis base.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available