4.8 Article

USP15-dependent lysosomal pathway controls p53-R175H turnover in ovarian cancer cells

Related references

Note: Only part of the references are listed.
Review Oncology

Targeting mutant p53 for efficient cancer therapy

Vladimir J. N. Bykov et al.

NATURE REVIEWS CANCER (2018)

Review Oncology

Mutant p53 as a target for cancer treatment

Michael J. Duffy et al.

EUROPEAN JOURNAL OF CANCER (2017)

Article Cell Biology

DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway

Alejandro Parrales et al.

NATURE CELL BIOLOGY (2016)

Article Multidisciplinary Sciences

The isolation of an RNA aptamer targeting to p53 protein with single amino acid mutation

Liang Chen et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2015)

Article Multidisciplinary Sciences

Nutlin-3α: A Potential Therapeutic Opportunity for TP53 Wild-Type Ovarian Carcinomas

Erin K. Crane et al.

PLOS ONE (2015)

Article Multidisciplinary Sciences

Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway

Matthias Drosten et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2014)

Review Biochemistry & Molecular Biology

The Consequence of Oncomorphic TP53 Mutations in Ovarian Cancer

Pavla Brachova et al.

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES (2013)

Article Biochemistry & Molecular Biology

Stabilization of the prostate-specific tumor suppressor NKX3.1 by the oncogenic protein kinase Pim-1 in prostate cancer cells

Achuth Padmanabhan et al.

JOURNAL OF CELLULAR BIOCHEMISTRY (2013)

Review Cell Biology

Mutant p53: one name, many proteins

William A. Freed-Pastor et al.

GENES & DEVELOPMENT (2012)

Article Biochemistry & Molecular Biology

Links between mutant p53 and genomic instability

Walter Hanel et al.

JOURNAL OF CELLULAR BIOCHEMISTRY (2012)

Article Multidisciplinary Sciences

The mutational landscape of lethal castration-resistant prostate cancer

Catherine S. Grasso et al.

NATURE (2012)

Article Biochemistry & Molecular Biology

USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma

Pieter J. A. Eichhorn et al.

NATURE MEDICINE (2012)

Article Biochemistry & Molecular Biology

Activity-Based Chemical Proteomics Accelerates Inhibitor Development for Deubiquitylating Enzymes

Mikael Altun et al.

CHEMISTRY & BIOLOGY (2011)

Article Biochemical Research Methods

edgeR: a Bioconductor package for differential expression analysis of digital gene expression data

Mark D. Robinson et al.

BIOINFORMATICS (2010)

Review Biochemistry & Molecular Biology

Modes of p53 Regulation

Jan-Philipp Kruse et al.

Review Oncology

p53 and metabolism

Karen H. Vousden et al.

NATURE REVIEWS CANCER (2009)

Article Biochemistry & Molecular Biology

Characterization of ubiquitin and ubiquitin-like-protein isopeptidase activities

Benjamin Nicholson et al.

PROTEIN SCIENCE (2008)

Article Biochemistry & Molecular Biology

Ubiquitination and degradation of mutant p53

Natalia Lukashchuk et al.

MOLECULAR AND CELLULAR BIOLOGY (2007)

Review Biochemistry & Molecular Biology

p53 ubiquitination: Mdm2 and beyond

CL Brooks et al.

MOLECULAR CELL (2006)

Article Oncology

Ubiquitination of p53 at multiple sites in the DNA-binding domain

WM Chan et al.

MOLECULAR CANCER RESEARCH (2006)

Article Cell Biology

Different gene expression patterns in invasive lobular and ductal carcinomas of the breast

HJ Zhao et al.

MOLECULAR BIOLOGY OF THE CELL (2004)

Review Oncology

Live or let die: The cell's response to p53

KH Vousden et al.

NATURE REVIEWS CANCER (2002)

Article Multidisciplinary Sciences

Surfing the p53 network

B Vogelstein et al.

NATURE (2000)