4.7 Article

RAGE-dependent mitochondria pathway: a novel target of silibinin against apoptosis of osteoblastic cells induced by advanced glycation end products

Journal

CELL DEATH & DISEASE
Volume 9, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41419-018-0718-3

Keywords

-

Categories

Funding

  1. Zhejiang Provincial Natural Science Foundation of China [LY15H140008]
  2. Natural Science Foundation of China [81500817, 81500871]
  3. Health Science and Technology Project of Zhejiang Province [2016KYB184]
  4. Zhejiang Provincial Science and Technology Project for Public Welfare [2017C33081]
  5. Wenzhou Technology Bureau Project [Y20170026]
  6. Zhejiang Provincial College Students' Science and Technology Innovation Project [2016R413081, 2017R413056, 2017R413067]
  7. Zhejiang Provincial College Students' Fresh Talent Program [2016R413081, 2017R413056, 2017R413067]

Ask authors/readers for more resources

Advanced glycation end products (AGEs) can stimulate osteoblast apoptosis and have a critical role in the pathophysiology of diabetic osteoporosis. Mitochondrial abnormalities are closely related to osteoblast dysfunction. However, it remains unclear whether mitochondrial abnormalities are involved in AGE-induced osteoblastic cell apoptosis. Silibinin, a major flavonolignan compound of silimarin, has strong antioxidant and mitochondria-protective properties. In the present study, we explored the possible mitochondrial mechanisms underlying AGE-induced apoptosis of osteoblastic cells and the effect of silibinin on osteoblastic cell apoptosis. We demonstrated that mitochondrial abnormalities largely contributed to AGE-induced apoptosis of osteoblastic cells, as evidenced by enhanced mitochondrial oxidative stress, conspicuous reduction in mitochondrial membrane potential and adenosine triphosphate production, abnormal mitochondrial morphology, and altered mitochondrial dynamics. These AGE-induced mitochondrial abnormalities were mainly mediated by the receptor of AGEs (RAGE). In addition, we found that silibinin directly downregulated the expression of RAGE and modulated RAGE mediated mitochondrial pathways, thereby preventing AGE-induced apoptosis of osteoblastic cells. This study not only provides a new insight into the mitochondrial mechanisms underlying AGE-induced osteoblastic cell apoptosis, but also lays a foundation for the clinical use of silibinin for the prevention or treatment of diabetic osteoporosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available