4.5 Article

QUANTITATIVE STOCHASTIC HOMOGENIZATION AND REGULARITY THEORY OF PARABOLIC EQUATIONS

Journal

ANALYSIS & PDE
Volume 11, Issue 8, Pages 1945-2014

Publisher

MATHEMATICAL SCIENCE PUBL
DOI: 10.2140/apde.2018.11.1945

Keywords

stochastic homogenization; parabolic equation; large-scale regularity; variational methods

Funding

  1. NSF [DMS-1700329]
  2. ANR grant LSD [ANR-15-CE40-0020-03]

Ask authors/readers for more resources

We develop a quantitative theory of stochastic homogenization for linear, uniformly parabolic equations with coefficients depending on space and time. Inspired by recent works in the elliptic setting, our analysis is focused on certain subadditive quantities derived from a variational interpretation of parabolic equations. These subadditive quantities are intimately connected to spatial averages of the fluxes and gradients of solutions. We implement a renormalization-type scheme to obtain an algebraic rate for their convergence, which is essentially a quantification of the weak convergence of the gradients and fluxes of solutions to their homogenized limits. As a consequence, we obtain estimates of the homogenization error for the Cauchy-Dirichlet problem which are optimal in stochastic integrability. We also develop a higher regularity theory for solutions of the heterogeneous equation, including a uniform C-0,C-1-type estimate and a Liouville theorem of every finite order.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available