3.8 Proceedings Paper

Nanowire-based surface-enhanced Raman spectroscopy (SERS) for chemical warfare simulants

Publisher

SPIE-INT SOC OPTICAL ENGINEERING
DOI: 10.1117/12.920777

Keywords

Surface-enhance Raman spectroscopy; nanowires; templated electrodeposition; chemical warfare agent

Ask authors/readers for more resources

Hand-held instruments capable of spectroscopic identification of chemical warfare agents (CWA) would find extensive use in the field. Because CWA can be toxic at very low concentrations compared to typical background levels of commonly-used compounds (flame retardants, pesticides) that are chemically similar, spectroscopic measurements have the potential to reduce false alarms by distinguishing between dangerous and benign compounds. Unfortunately, most true spectroscopic instruments (infrared spectrometers, mass spectrometers, and gas chromatograph-mass spectrometers) are bench-top instruments. Surface-acoustic wave (SAW) sensors are commercially available in hand-held form, but rely on a handful of functionalized surfaces to achieve specificity. Here, we consider the potential for a hand-held device based on surface enhanced Raman scattering (SERS) using templated nanowires as enhancing substrates. We examine the magnitude of enhancement generated by the nanowires and the specificity achieved in measurements of a range of CWA simulants. We predict the ultimate sensitivity of a device based on a nanowire-based SERS core to be 1-2 orders of magnitude greater than a comparable SAW system, with a detection limit of approximately 0.01 mg m-3.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available