4.8 Article

Sensitized triplet-triplet annihilation upconversion in water and its application to photochemical transformations

Journal

CHEMICAL SCIENCE
Volume 9, Issue 32, Pages 6670-6678

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8sc01829d

Keywords

-

Funding

  1. German National Academy of Sciences Leopoldina [LPDS 2017-11]
  2. Swiss National Science Foundation [200021_178760]

Ask authors/readers for more resources

Sensitized triplet-triplet annihilation (TTA) is a promising mechanism for solar energy conversion, but so far its application has been practically completely limited to organic solvents and self-assembled or solid state systems. Combining water-soluble ruthenium complex-pyrene dyads with particularly long excited-state lifetimes as sensitizers and highly fluorescent commercial anthracenes as acceptors/ annihilators, we were able to achieve green-to-violet upconversion with unprecedented quantum yields in pure water. Compared to the only known system exploiting sensitized TTA in homogeneous aqueous solution, we improve the overall photon upconversion efficiency by a full order of magnitude and present the very first example for a chemical transformation on a laboratory scale via upconversion in water. Specifically, we found that a thermodynamically challenging carbon-chlorine bond activation can be driven by green photons from an inexpensive continuous wave light source in the presence of dissolved oxygen. Our study is thus potentially relevant in the context of cleaning water from halogenated (toxic) contaminants and for sustainable photochemistry in the most environmentally friendly solvent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available