4.8 Article

Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency

Journal

CHEMICAL SCIENCE
Volume 9, Issue 3, Pages 586-593

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7sc04539e

Keywords

-

Funding

  1. Florida State University through the Energy and Materials Initiative
  2. National Science Foundation Graduate Research Fellowship [DGE-1449440]
  3. National Science Foundation [CHE-1531629]

Ask authors/readers for more resources

Single crystalline zero-dimensional (0D) organic-inorganic hybrid materials with perfect host-guest structures have been developed as a new generation of highly efficient light emitters. Here we report a series of lead-free organic metal halide hybrids with a 0D structure, (C4N2H14X)(4)SnX6 (X = Br, I) and (C9NH20)(2)SbX5 (X = Cl), in which the individual metal halide octahedra (SnX64-) and quadrangular pyramids (SbX52-) are completely isolated from each other and surrounded by the organic ligands C4N2H14X+ and C9NH20+, respectively. The isolation of the photoactive metal halide species by the wide band gap organic ligands leads to no interaction or electronic band formation between the metal halide species, allowing the bulk materials to exhibit the intrinsic properties of the individual metal halide species. These 0D organic metal halide hybrids can also be considered as perfect host-guest systems, with the metal halide species periodically doped in the wide band gap matrix. Highly luminescent, strongly Stokes shifted broadband emissions with photoluminescence quantum efficiencies (PLQEs) of close to unity were realized, as a result of excited state structural reorganization of the individual metal halide species. Our discovery of highly luminescent single crystalline 0D organic-inorganic hybrid materials as perfect host-guest systems opens up a new paradigm in functional materials design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available