4.8 Article

Synthesis and applications of highly functionalized 1-halo-3-substituted bicyclo[1.1.1]pentanes

Journal

CHEMICAL SCIENCE
Volume 9, Issue 23, Pages 5295-5300

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8sc01355a

Keywords

-

Funding

  1. EPSRC Centre for Doctoral Training in Synthesis for Biology and Medicine [EP/L015838/1]
  2. AstraZeneca
  3. Diamond Light Source
  4. Defence Science and Technology Laboratory
  5. Evotec
  6. GlaxoSmithKline
  7. Janssen
  8. Novartis
  9. Pfizer
  10. Syngenta
  11. Takeda
  12. UCB
  13. Vertex
  14. EPSRC [EP/M019195/1]
  15. Heinrich Hertz Foundation
  16. EPSRC [EP/M019195/1] Funding Source: UKRI

Ask authors/readers for more resources

Bicyclo[ 1.1.1] pentanes (BCPs) are important bioisosteres of 1,4-disubstituted arenes, tert-butyl and acetylenic groups that can impart physicochemical benefits on drug candidates. Here we describe the synthesis of BCPs bearing carbon and halogen substituents under exceptionally mild reaction conditions, via triethylborane-initiated atom-transfer radical addition ring-opening of tricyclo[ 1.1.1.01,3] pentane (TCP) with alkyl halides. This chemistry displays broad substrate scope and functional group tolerance, enabling application to BCP analogues of biologically-relevant targets such as peptides, nucleosides, and pharmaceuticals. The BCP halide products can be converted to the parent phenyl/tert-butyl surrogates through triethylborane-promoted dehalogenation, or to other derivatives including carbonyls, alcohols, and heterocycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available